ООО «АПЭЛ»

Спецификация реализации службы сообщений трекера. Tracker Message Service Версия 0.10

Редактор: М.С. Дёмин

Дата: 31.03.10

Содержание

Введение	5
Сеанс связи трекера с сервером	6
Сообщения	8
Идентификация трекера	9
Идентификация трекера (расширенная)	9
Пароль	10
Текущие GPS-данные	10
Текущее состояние трекера Т-104.	12
Состояние датчиков.	14
Состояние входов и выхода трекера АПЭЛ Т-100	17
Состояние входов и выходов трекера АПЭЛ Т-100.4	18
Исторические данные (журнал)	19
Индекс записи следующей за последней записью в журнале	19
Записи из журнала	19
Закрытие сеанса связи	22
Событие	22
Пустое сообщение («пустышка»)	22
Текст	23
Установка режима работы трекера	23
GPRS-команда	24
Текущие настройки трекера	24
Установка настроек трекера	25
Аварийные сообщения	26
Применение аварийных сообщений	26
Виды аварийных сообщений	29
Приложение 1	30
История изменений	32

Предисловие

Данный документ содержит описание протокола Tracker Message Service (далее TMS) разработанного в ООО «АПЭЛ».

Мы приветствуем предложения, дополнения, изменения и комментарии к данному документу. Такие предложения могут быть отправлены по электронной почте.

Контакты участников разработки спецификации

Контактное лицо	Компания	Контактная информация
Батурин Алексей Валентинович	АПЭЛ	a.baturin@apel.ru
Дёмин Максим Сергеевич	АПЭЛ	maxim@apel.ru

Будущая работа

Дальнейшая работа предстоит над расширением протокола. Будут добавлены функции настройки различных параметров трекера (режим записи трека, архивирование данных от датчиков) и др.

Введение

Протокол TMS описывает типы сообщений и порядок их обмена между сервером и трекером.

Бинарные данные имеют организацию Little-endian (дополнительная информация — по адресу http://en.wikipedia.org/wiki/Endianness).

Типы данных соответствуют типам языка С (си).

Внимание! Для передачи строки сначала передается ее длина (unsigned short), а далее сама строка, но без NULL-терминатора.

Например: Строка «АПЭЛ» в памяти примет вид:

04	00	C0	CF	DD	СВ
4	1	'A'	'Π'	'Э'	'ח'

Начиная с прошивки 000.013 трекеры при соединении с сервером сразу используют расширенную идентификацию, в журнал сохраняют сообщения с полной информацией о состоянии трекера. Это реализовано для сбора всех данных в одну таблицу с привязкой месту и времени возникновения события.

При реализации протокола TMS для трекеров АПЭЛ Т-104 в новых системах мониторинга для получения информации о местоположении объекта и показаниях датчиков рекомендуется использовать сообщение:

Остальные сообщения оставлены для совместимости со старыми версиями трекеров:

MSG_TYPE_REQUEST_CURRENT_GPS_DATA
MSG_TYPE_REQUEST_SENSORS_STATE
MSG_TYPE_SENSORS_STATE_T100
MSG_TYPE_SENSORS_STATE_T100 4

1. Сеанс связи трекера с сервером

Перед установкой трекера на транспортное средство ему задается IP-адрес и порт сервера с помощью соответствующего ПО. Описание этого ПО не входит в данную спецификацию.

Весь обмен данными между сервером и трекером ведется путем обмена сообщениями по ТСР.

Соединение инициализируется трекером. Трекер выступает в роли TCP-клиента, сервер — в роли TCP-сервера.

После открытия сокета трекер передает серверу идентификационную информацию (свой номер и пароль). После этого сеанс связи считается открытым.

Далее сервер начинает посылать команды и запросы трекеру, на которые трекер отправляет соответствующие ответы.

Трекер может отправлять сообщения и без запроса от сервера. Например, он может быть запрограммирован на периодическую передачу текущей координаты и показаний датчиков или отправлять сообщении о каком-либо событии.

Для окончания сеанса связи сервер высылает трекеру команду на закрытие сеанса MSG TYPE DISCONNECT.

Пример сеанса связи представлен на рис.1.

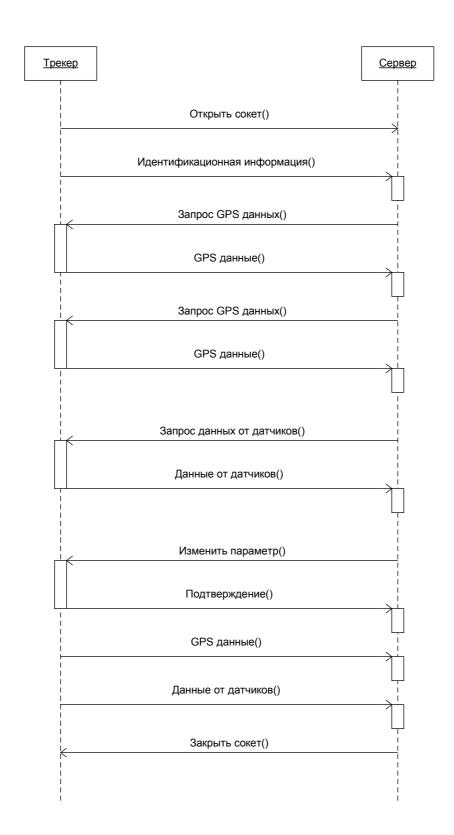


Рисунок 1. Пример сеанса связи трекера с сервером

2. Сообщения

В общем случае сообщение состоит из заголовка сообщения, тела сообщения и циклического избыточного кода (CRC):

Рисунок 2. Структура сообщения.

Сообщение *всегда* имеет заголовок, который содержит тип сообщения и длину тела сообщения, и всегда имеет CRC, а тело сообщения — необязательно. В общем случае сообщение будет иметь вид:

Таблица 1. Структура сообщения

Nº	Наименование поля	Тип данных	Обозначение
1	Тип сообщения и флаг аварийного сообщения	short	type
2	Длина тела сообщения	unsigned short	bodySize
3	Тело сообщения	char[bodySize]	body
4	Контрольная сумма	int	crc32

Поле *type* имеет следующую структуру:

0 .. 15 биты: тип сообщения;

16-ый бит: флаг аварийного сообщения (подробное описание см. ниже).

Если сообщение не имеет тела сообщения, то длина тела сообщения указывается равной нулю. Большая часть запросов от сервера будут иметь именно такой вид. Такие запросы от сервера в данном документе будут именоваться *простыми запросами*.

Если принятое сообщение имеет неизвестный тип, то трекер автоматически закроет сеанс связи с сервером.

Типы сообщений указаны в приложении №1.

2.1. Идентификация трекера

Простой запрос сервером идентификации трекера имеет тип MSG TYPE REQUEST TRACKER ID.

В ответ на запрос трекер посылает идентификационное сообщение (тип сообщения — MSG TYPE TRACKER ID).

Таблица 2. Тело сообщения «Идентификатор трекера»

Nº	Наименование поля	Тип данных	Обозначение
1	Идентификатор трекера	unsigned int	id

Данный идентификатор является уникальным для каждого устройства.

2.2. Идентификация трекера (расширенная)

Простой запрос сервером идентификации трекера имеет тип MSG TYPE REQUEST TRACKER ID.

В ответ на запрос трекер посылает идентификационное сообщение (тип сообщения — MSG TYPE TRACKER ID EXT).

Таблица 3. Тело сообщения «Идентификаторы трекера»

Nº	Наименование поля	Тип данных	Обозначение
1	Идентификатор трекера	unsigned int	id
2	Длина идентификатора SIM- карты	unsigned short	simIdLength
3	Идентификатор SIM-карты	char[simIdLength]	simId
4	Длина идентификатора IMEI	unsigned short	imeiLength
5	Идентификатор IMEI	char[imeiLength]	imei
6	Длина пароля	unsigned short	passwordLength
7	Пароль	char[passwordLength]	password

Идентификатор **id** является уникальным для каждого устройства.

2.3. Пароль

Простой запрос пароля имеет тип MSG_TYPE_REQUEST_PASSWORD.

Тело сообщения с паролем (тип — MSG_TYPE_PASSWORD) имеет следующую структуру:

Таблица 4. Тело сообщения «Пароль»

Ng	Наименование поля	Тип данных	Обозначение
1	Длина пароля	unsigned short	passwordLength
2	Пароль	char[passwordLength]	password

Максимальная длина пароля (поле passwordLength) равна 32.

2.4. Текущие GPS-данные

Простой запрос сервером текущих GPS-данных имеет тип MSG_TYPE_REQUEST_CURRENT_GPS_DATA.

Тело сообщения с GPS-данными от трекера (тип — MSG_TYPE_CURRENT_GPS_DATA) имеет следующую структуру:

Таблица 5. Тело сообщения «Текущие GPS-данные»

Nº	Наименование поля	Тип данных	Обозначение
1	Время измерения	int	observationTime
2	Широта	int	lat
3	Долгота	int	lon
4*	Скорость над поверхностью земли, км/ч (в сотых долях)	short	speed
**	Флаг — данные недостоверны		
5 [*]	Направление движения, градусы (в сотых долях)	short	heading
6 [*]	Высота над уровнем моря, м (в сотых долях)	short	altitude

* две младшие цифры — десятичная дробная часть (например, speed=3245 — это 32.45км/ч).

" если навигационные данные не определены (не достоверны), то поле *speed* принимает значение равное -1 (255).

Время измерения привязано к универсальному координированному времени (UTC) и равняется количеству секунд прошедших с 1 января 1970г. 00:00:00 GMT.

Широта и долгота хранятся в условных единицах, и рассчитываются по формулам:

lat = (int) ((ШИРОТА_B_
$$\Gamma$$
РАДУСАХ / 180.0) * 0x7FFFFFF)

И

$$lon = (int) ((ДОЛГОТА_B_ГРАДУСАХ / 180.0) * 0x7FFFFFFF).$$

Северная широта берется со знаком «+», южная - со знаком «-».

Восточная долгота берется со знаком «+», западная - со знаком «-».

Например:

Имеем географические координаты точки S 40°30′30,50″ E179°15′00,00″.

Переводим в градусы:

$$S 40^{\circ}30'30,50'' = -40,5084722222^{\circ}$$

Далее полученные величины подставляем в формулы:

$$lat = (-40,5084722222 / 180,0) * 2147483647 = -483284898 = 0xE331A85E$$

$$lon = (179,25 / 180,0) * 2147483647 = 2138535798 = 0x7F777776$$

Для обратного перевода применяются формулы:

ШИРОТА_B_ГРАДУСАХ =
$$((double)lat) / 0x7FFFFFFF * 180.0$$

ДОЛГОТА_B_ГРАДУСАХ =
$$((double)lon) / 0x7FFFFFFFF * 180.0$$

2.5. Текущее состояние трекера Т-104

Простой запрос сервером текущего состояния имеет тип MSG TYPE REQUEST STATE FULL INFO.

Тело сообщения с полной информацией о состоянии трекера (тип — MSG_TYPE_STATE_FULL_INFO_T104) имеет следующую структуру:

Таблица 6. Тело сообщения «Текущее состояние трекера Т-104»

Nº	Наименование поля	Тип данных	Обозначение
1	Время	int	observationTme
2	Широта	int	lat
3	Долгота	int	lon
4	Скорость над поверхностью земли, км/ч	unsigned char	speed
**	Флаг — данные недостоверны		
5	HDOP (Horizontal Dilution of Precision) — снижение точности в горизонтальной плоскости, дециметры	char	hdop
6	Направление движения, градусы (в десятых долях)	short	heading
7	Высота над уровнем моря, м	short	altitude
8	Количество спутников GPS	char	satCount
9	Уровень сигнала GSM	char	gsmSignalQuality
10	Тип события	short	eventType
11	Счетчик пройденного пути, м	int	metersTraveled
12	Дискретные входы (маска)	char	DI
13	Дискретные выходы (маска)	char	DO
14	Показания аналогового датчика AIN0, мВ	unsigned short	AI0
15	Показания аналогового датчика AIN1, мВ	unsigned short	Al1
16	Показания аналогового датчика AIN2, мВ	unsigned short	AI2
17	Показания аналогового датчика AIN3, мВ	unsigned short	Al3
18	Показания аналогового датчика AIN12 (плата расширения), мВ	unsigned short	Al12
19	Показания аналогового датчика AIN13 (плата расширения), мВ	unsigned short	Al13
20	Показания аналогового датчика AIN14 (напряжение на внутреннем аккумуляторе), мВ	unsigned short	Al14

Nº	Наименование поля	Тип данных	Обозначение
21	Показания аналогового датчика AIN15 (напряжение на внешнем аккумуляторе), мВ	unsigned short	Al15
22	Значения счетчика С0	unsigned int	counterValue0
23	Значения счетчика С1	unsigned int	counterValue1
24	Значения счетчика С2	unsigned int	counterValue2

^{**} если навигационные данные не определены (не достоверны), то поле speed принимает значение равное -1 (255).

Время измерения привязано к универсальному координированному времени (UTC) и равняется количеству секунд прошедших с 1 января 1970г. 00:00:00 GMT.

Широта и долгота хранятся в условных единицах, и рассчитываются по формулам:

lat = (int) ((ШИРОТА В ГРАДУСАХ / 180.0) * 0x7FFFFFFF)

lon = (int) ((ДОЛГОТА_B_ГРАДУСАХ / 180.0) * 0x7FFFFFFF).

Северная широта берется со знаком «+», южная - со знаком «-».

Восточная долгота берется со знаком «+», западная - со знаком «-».

Например:

Имеем географические координаты точки S 40°30′30,50″ E179°15′00,00″.

Переводим в градусы:

S 40°30′30,50″ = -40,5084722222°

 $E179^{\circ}15'00,00'' = +179,25^{\circ}$

Далее полученные величины подставляем в формулы:

lat = (-40,5084722222 / 180,0) * 2147483647 = -483284898 = 0xE331A85E

lon = (179,25 / 180,0) * 2147483647 = 2138535798 = 0x7F777776

Для обратного перевода применяются формулы:

ШИРОТА_B_ГРАДУСАХ = ((double)lat) / 0x7FFFFFFF * 180.0

ДОЛГОТА В ГРАДУСАХ = ((double)lon) / 0x7FFFFFFFF * 180.0

Уровень сигнала GSM gsmSignalQuality принимает значения от 0 (-115дБ) до 31 (-59дБ) и значение 99, если уровень не определен.

2.6. Состояние датчиков

Трекер может адресовать 32 дискретных входа (с 0 до 31), 16 дискретных выхода (с 0 до 15) и 16 аналоговых входов (с 0 до 15). Каждый дискретный вход может работать как 32-разрядный счетчик (принимать значение от 0 до 4294967295).

Запрос сервером состояния датчиков имеет тип MSG TYPE REQUEST SENSORS STATE.

Таблица 7. Тело сообщения «Запрос состояния датчиков»

Nº	Наименование поля	Тип данных	Обозначение
1	Маска запроса значений аналоговых входов	short	analogMask
2	Маска запроса счетчиков	int	counterMask

Пример. Трекер настроен так, что имеет один счетный дискретный вход - №1, два простых - №2 и №3, три дискретных выхода - №1, №2 и №3, и нас интересует состояние второго и пятого аналогового входа. Тогда запрос будет иметь вид:

Таблица 8. Пример запроса состояния датчиков

Nº	Наименование поля	Тип данных	Обозначение
1	Тип сообщения	short	type = MSG_TYPE_REQUEST_SENSOR_STATE
2	Длина тела сообщения	unsigned short	bodySize = 6
3	Маска запроса значений аналоговых датчиков	short	analogMask = 0000 0000 0001 0010 b = 0x0012 = 18
4	Маска запроса счетчиков	int	counterMask = 0x1
5	Контрольная сумма	int	crc32 =

Тело сообщения с состоянием датчиков (тип — MSG_TYPE_SENSORS_STATE) имеет следующую структуру:

Таблица 9. Тело сообщения «Состояние датчиков»

Nº	Наименование поля	Тип данных	Обозначение
1	Время измерения	int	observationTime
2	Дискретные входы	unsigned int	DI
3	Дискретные выхода	unsigned short	DO
4	Маска - аналоговые датчики	unsigned short	analogMask
5	Показания аналоговых датчиков, мВ	unsigned short[]	Al
6	Маска - счетчики	unsigned int	counterMask
7	Значения счетчиков	unsigned int[]	counterValue

Поле AI содержит показания аналоговых датчиков выраженные в милливольтах. Например, если AI = 13412, то показания датчика равны 13412 мВ или же 13,412 В.

Пример. Если вернуться к нашему примеру (см. табл. «Пример запроса состояния датчиков»), то тело ответа будет иметь вид:

Таблица 10. Пример тела сообщения «Состояние датчиков»

Nº	Наименование поля	Тип данных	Обозначение
1	Время измерения	int	observationTime = 1209896096 (04.05.08 14:15:34 GMT+04:00)
2	Дискретные входа	int	DI = 0000 0000 0000 0000 0000 0000 0000
3	Дискретные выхода	short	DO = 0000 0000 0000 0001 b = 0x0001
4	Маска - аналоговые датчики	short	analogMask = 1000 0000 0000 0011 b = 0x0012 = 18
5	Показания аналоговых датчиков, мВ	unsigned short[]	AI[] = {12450, 4057, 6302}
6	Маска - счетчики	int	counterMask = 0000 0000 0000 0001 b = 0x1
7	Значения счетчиков	unsigned int[]	counterValue[] = {548134}

Состояния дискретных входов: №0 - «1», №1 - «1», №2 - «0»:

DI0 = 1

DI1 = 1

DI2 = 0

Состояния дискретных выходов: №0 - «1», №1 - «0», №2 - «0».

DO0 = 1

DO1 = 0

DO2 = 0

Показания нулевого, первого и пятнадцатого аналоговых датчиков равны соответственно 12450мB, 4057 мВ и 6302 мВ.

AI0 = 12450 MB

AI1 = 4057 MB

AI15 = 6302 MB

Значение счетчика №0 равно 548134.

2.7. Состояние входов и выхода трекера АПЭЛ Т-100

Трекер АПЭЛ Т-100 имеет 3 дискретных входа, 1 выход и 2 аналоговых входа. Для хранения записей о состоянии входов и выхода трекера в архиве используется данное сообщение.

Тип сообщения — MSG_TYPE_SENSORS_STATE_T100. Тело сообщения имеет следующую структуру:

Таблица 11. Тело сообщения «Состояние входов и выхода трекера АПЭЛ Т-100»

Nº	Наименование поля	Тип данных	Обозначение
1	Время измерения	int	observationTime
2	Дискретные входа и выход	char	битовая маска, см. примечание к табице
3	Показания аналогового датчика AIN0, мВ	unsigned short	AI0
4	4 Показания аналогового датчика AIN1, мВ unsigned short		Al1
5	Значения счетчика С0	unsigned int	counterValue0
6	Значения счетчика С1	unsigned int	counterValue1
7	Значения счетчика С2	unsigned int	counterValue2

Дискретные входа и выход хранятся в одном байте:

Биты 0, 1 и 2 — значения соответственно 0-го, 1-го и 2-го дискретных входов; бит 7 — значение дисткретного выхода.

Поля **AI0** и **AI1** содержат показания аналоговых датчиков выраженные в милливольтах. Например, если AI = 13412, то показания датчика равны 13412 мВ или же 13,412 В.

2.8. Состояние входов и выходов трекера АПЭЛ Т-100.4

Трекер АПЭЛ Т-100.4 имеет 7 универсальных линий. В итоге можно получить до 7 дискретных входов (2 из которых счетные), 7 дискретных выходов, 4 аналоговых входов. Для хранения записей о состоянии входов и выхода трекера в архиве используется данное сообщение.

Тип сообщения — MSG_TYPE_SENSORS_STATE_T100_4. Тело сообщения имеет следующую структуру:

Таблица 12. Тело сообщения «Состояние входов и выходов трекера АПЭЛ Т-100.4»

Nº	Наименование поля	Тип данных	Обозначение
1	Время измерения	int	observationTime
2	Дискретные входа	char	битовая маска, номер бита соответствует номеру входа
3	Дискретные выходы	char	битовая маска, номер бита соответствует номеру выхода
3	Показания аналогового датчика AIN0, мВ	unsigned short	AI0
4	Показания аналогового датчика AIN1, мВ	unsigned short	Al1
4	Показания аналогового датчика AIN2, мВ	unsigned short	Al2
4	Показания аналогового датчика AIN3, мВ	unsigned short	Al3
5	Значения счетчика С0	unsigned int	counterValue0
6	Значения счетчика С1	unsigned int	counterValue1

Дискретные входа и выход хранятся в одном байте:

Поля **AI0** .. **AI3** содержат показания аналоговых датчиков выраженные в милливольтах. Например, если AI = 13412, то показания датчика равны 13412 мВ или же 13,412 В.

2.9. Исторические данные (журнал)

2.9.1. Индекс записи следующей за последней записью в журнале

Простой запрос сервером индекса записи следующей за последней записью в журнале имеет тип MSG_TYPE_REQUEST_LAST_LOG_INDEX.

Тело сообщения с индексом записи следующей за последней записью в журнале (тип — MSG_TYPE_LAST_LOG_INDEX) имеет следующую структуру:

Таблица 13. Тело сообщения «Индекса записи следующей за последней записью в журнале»

Nº	Наименование поля	Тип данных	Обозначение
1	Индекс записи следующей за последней записью в журнале	unsigned int	lastIndex

Например, если имеет в своем журнале последнюю запись с индексом 300, то мы получим ответ с индексом 301.

Если журнал трекера пуст, то мы получим ответ с индексом 0.

2.9.2. Записи из журнала

Запрос записей из журнала имеет тип MSG_TYPE_REQUEST_LOG_RECORDS и структуру тела сообщения, как представлено в следующей таблице:

Таблица 14. Тело сообщения «Запрос записей из журнала»

Nº	Наименование поля	Тип данных	Обозначение
1	Индекс записи в журнале, с которой считать журнал	unsigned int	fromIndex
2	Максимальный размер тела ответа, байт	unsigned short	maxBodySize

Ответ трекера имеет тип MSG_TYPE_LOG_RECORDS. Тело сообщения имеет следующую структуру:

Таблица 15. Тело сообщения «Записи из журнала»

Nº	Наименование поля	Тип данных	Обозначение
1	Количество записей	unsigned short	recordsCount
2	Записи	см. ниже	

Поле «Записи» содержит список из записей журнала.

Каждая запись журнала имеет структуру:

Таблица 16. Структура записи журнала

Nº	Наименование поля	Тип данных	Обозначение
1	Индекс записи	unsigned int	index
2	Тело записи		

Тело записи — это сообщение типа MSG_TYPE_CURRENT_GPS_DATA, MSG TYPE SENSORS STATE или MSG TYPE EVENT без поля CRC32.

Пример. В сообщении содержатся 3 записи: GPS-данные, состояние датчиков и еще GPS-данные. Структура всего сообщения будет иметь вид:

Таблица 17. Пример сообщения «Записи из журнала»

Nº	Наименование поля	Тип данных	Значение		
1	Тип сообщения	short	type = MSG_TYPE_LOG_RECORDS		
2	Длина тела сообщения	unsigned short	bodySize =		
	Начало тела сообщения				
3	Количество записей	unsigned short	short recordsCount = 3		
	3aı	пись №1 (GPS-	данные):		
4	Индекс записи	unsigned int	index = 100565		
5	Тип сообщения	short	type = MSG_TYPE_CURRENT_GPS_DATA		
6	Длина тела сообщения	unsigned short	bodySize = 18		

Nº	Наименование поля	Тип данных	Значение		
7	Время измерения	int	observationTime = 1209896096 (04.05.08 14:15:34 GMT+04:00)		
8	Широта	int	lat = 638568817 (53.52421995°)		
9	Долгота	int	Ion = 590540584 (49.49853996°)		
10	Скорость над поверхностью земли	short	speed = 5456 (54.56 км/ч)		
11	Направление движения	short	heading = 8700 (87°)		
12	Высота над уровнем моря	short	altitude = 6427 (64.27 м)		
	Запись	№2 (Состояні	ие датчиков):		
13	Индекс записи	unsigned int	index = 100566		
14	Тип сообщения	short	type = MSG_TYPE_SENSORS_STATE		
15	Длина тела сообщения	unsigned short	bodySize = 7		
16	Время измерения	int	observationTime = 1209896096 (04.05.08 14:15:34 GMT+04:00)		
17	Дискретные датчики	char	discrete = 133		
18	Показание аналогового датчика, мВ	unsigned short	analog = 9804		
	Заг	тись №3 (GPS-	данные):		
19	Индекс записи	unsigned int	index = 100567		
20	Тип сообщения	short	type = MSG_TYPE_CURRENT_GPS_DATA		
21	Длина тела сообщения	unsigned short	bodySize = 18		
22	Время измерения	int	observationTime = 1209896156 (04.05.08 14:16:34 GMT+04:00)		
23	Широта	int	lat = 638568817 (53.52421995°)		
24	Долгота	int	lon = 590540584 (49.49853996°)		
25	Скорость над поверхностью земли	short	speed = 5456 (54.56 км/ч)		
26	Направление движения	short	heading = 8700 (87°)		
27	Высота над уровнем моря	short	altitude = 6427 (64.27 м)		
	Конец тела сообщения				
28	Контрольная сумма	int	crc32		

2.10. Закрытие сеанса связи

Для завершения сеанса связи сервер посылает сообщение, которое имеет тип MSG_TYPE_DISCONNECT и не имеет тела сообщения.

По этой команде трекер закрывает TCP-сокет. Соединение будет восстановлено трекером через некоторый промежуток времени, который зависит от его настроек.

2.11. Событие

При возникновении события (например, изменение состояния дискретного входа) трекер может отправить или сохранить в журнал следующее сообщение.

Тип сообщения — MSG_TYPE_EVENT. Тело сообщения представлено в таблице:

Таблица 18. Тело сообщения «Событие»

Nº	Наименование поля	Тип данных	Обозначение
1	Время возникновения события	int	occurrenceTime
2	Тип события	short	eventType

Типы событий указаны в приложении («Tracker_structures.h»).

2.12. Пустое сообщение («пустышка»)

Сообщение «пустышка» предназначено для отладки и не подразумевает выполнения каких-либо действий со стороны сервера или трекера.

Тип сообщения — MSG_TYPE_NULL. Тело сообщения отсутствует.

2.13. Текст

Сообщение «Текст» предназначено в первую очередь для отладки трекера. В дальнейшем возможны и другие варианты применения данного сообщения.

Тип сообщения — MSG_TYPE_TEXT. Тело сообщения представлено в таблице:

Таблица 19. Тело сообщения «Текст»

Nº	Наименование поля	рвание поля Тип данных	
1	Длина текста	unsigned short	length
2	Текст	char[length]	text

2.14. Установка режима работы трекера

Во время работы трекер может находится в одном из четырех режимов. Условно они называются: Mode0, Mode1, Mode2, Mode3.

При программировании событий, каждому событию указываются режимы в которых оно (событие) будет обрабатываться. Таким образом реализуется различная реакция трекера на события в зависимости от текущего режима.

При включении трекер находится в режиме Mode0.

Данное сообщение служит для управления режимами трекера со стороны сервера.

Сообщение имеет тип MSG_TYPE_SET_TRACKER_MODE, тело сообщения представлено в таблице:

Таблица 20. Тело сообщения «Установка режима работы трекера»

Nº	Наименование поля	Тип данных	Обозначение
1	Номер устанавливаемого режима	short	mode

Поле mode может принимать значения от 0 до 3.

2.15. GPRS-команда

Сервер может послать трекеру номер действия, которое трекер должен выполнить. Данная команда реализована в прошивках трекеров начиная с версии 000.014. Коды событий и действий можно получить из программы настройки трекера. Для этого надо активизировать пункт меню <Файл - Экспорт кодов событий и действий...>. Программа создаст список и предложит его сохранить в виде текстового файла. Список кодов действий может быть расширен в последующих версиях прошивок трекеров.

Сообщение имеет тип MSG_TYPE_GPRS_COMMAND, тело сообщения представлено в таблице:

Таблица 21. Тело сообщения «GPRS-команда»

Nº	Наименование поля	Тип данных	Обозначение
1	Номер действия	short	actionNumber

2.16. Текущие настройки трекера

Простой запрос сервером текущих настроек трекера имеет тип MSG TYPE REQUEST TRACKER SETTINGS.

Тело сообщения с текущими настройками трекера (тип — MSG_TYPE_TRACKER_SETTINGS) имеет следующую структуру:

Таблица 22. Тело сообщения «Текущие настройки трекера»

Nº	Наименование поля	Тип данных	Обозначение
1	Длина текста с настройками трекера	unsigned short	length
2	Текущие настройки трекера в виде текстовой строки	char[length]	text

Список настроек и их параметров указан в приложении «sms_setup.pdf»

2.17. Установка настроек трекера

Сообщение «Установка настроек трекера» предназначено для изменения настроек трекера.

Тип сообщения — MSG_TYPE_SET_TRACKER_SETTINGS. Тело сообщения представлено в таблице:

Таблица 23. Тело сообщения «Установка настроек трекера»

Nº	Наименование поля	Тип данных	Обозначение
1	Тип обновления	short	refreshType
2	Длина текста	unsigned short	length
3	Текст	char[length]	Text

Поле refreshType указывает значение каких настроек должны быть изменены. Возможны следующие варианты:

0х0000 — Обновить только присланные значения настроек.

0x0001 — Сбросить все настройки трекера в значения по умолчанию и установить новые присланные настройки.

Настройки передаются в текстовой строке списком опций в виде «Переменная=Значение». В качестве разделителей настроек могут использоваться символы «запятая», «точка с запятой» и символ переноса строки. При этом символы «запятая» и «точка с запятой» нельзя использовать для значений текстовых переменных. Пароль Set и четыре цифры пароля не передаются.

Примеры настроек:

Правильно:

ServerIP=89.248.105.80, ServerPort=4321

SMS0 text=Test SMS message,SMS0 number=+79995552244

Неправильно:

ServerIP=89.248.105.80, ServerPort=4321

SMS0_text=Test, SMS message, SMS0_number=+79995552244

2.18. Аварийные сообщения

2.18.1. Применение аварийных сообщений

В некоторых случаях существует необходимость доставить информацию о какой-то экстренной ситуации. Например, нажатие в случае опасности тревожной кнопки водителем или срабатывание сигнализации.

Для гарантированной внеочередной доставки сообщений применяются аварийные сообщения.

Аварийные сообщения содержат ту же информацию, что и простые. Их отличие от простых сообщений состоит в том, что они будут передаваться трекером до тех пор, пока тот не получит от сервера подтверждение о доставке.

Еще одно отличие состоит в том, что в заголовке сообщения в поле «Тип сообщения» старший бит равен «1».

Принцип работы механизма аварийных сообщений показан на рисунке:

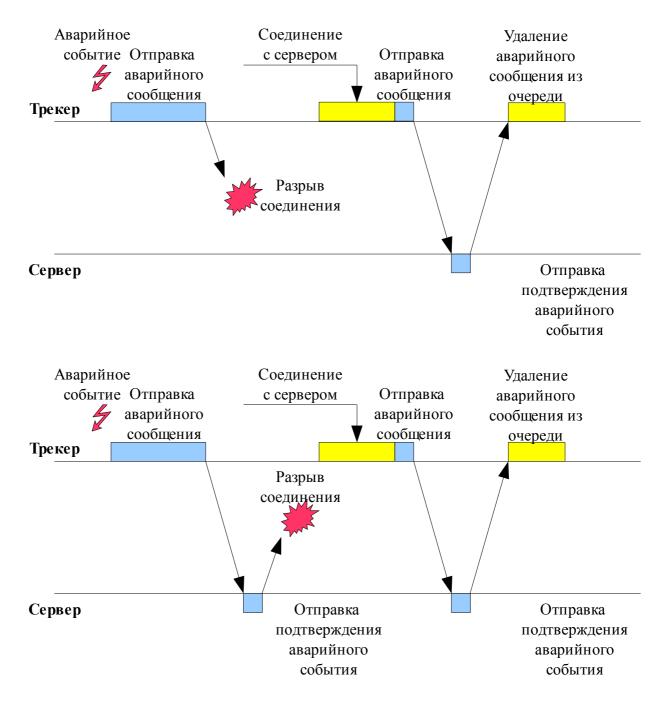


Рисунок 3. Отправка аварийного сообщения

Пример. Трекер настроен таким образом, что при нажатии на тревожную кнопку, он должен передавать текущую координату. В этом случае трекер будет постоянно передавать сообщение с текущей координатой на сервер, до тех пор, пока не получит подтверждение доставки от сервера.

Данный пример представлен на следующем рисунке:

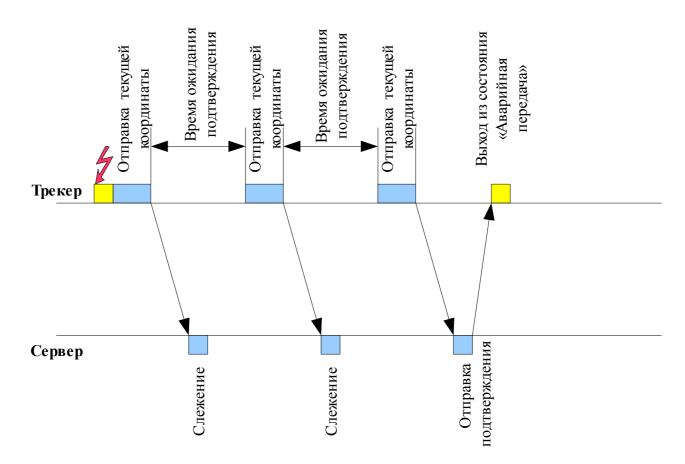


Рисунок 4. Пример реализации сервером подтверждения получения аварийного сообщения

При отправке подтверждения необходимо учитывать, что возможно возникновение ситуации, когда сервер отправляет подтверждение получения аварийного сообщения трекеру, но трекер, не дождавшись этого подтверждения, успевает отправить аварийное сообщение повторно.

Данная ситуация представлена на следующем рисунке:

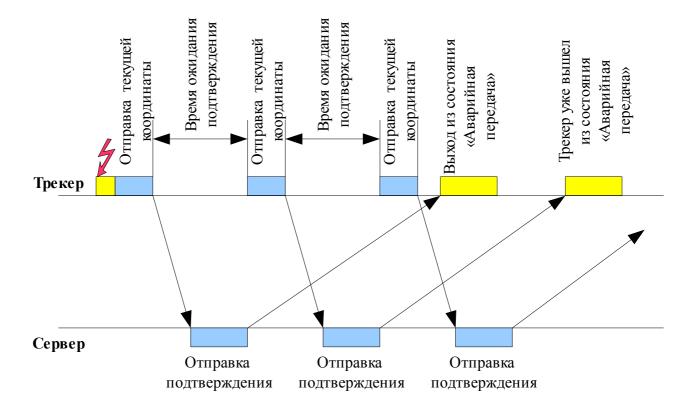


Рисунок 5. Сервер отправляет подтверждение повторно на одно и то же аварийное сообщение

2.18.2. Виды аварийных сообщений

Аварийными могут быть следующие виды сообщений:

Таблица 24. Виды аварийных сообщений

Обозначение	Значение	Значение с флагом «Аварийное сообщение»	Тип
MSG_TYPE_CURRENT_ GPS_DATA	101 (0x0065)	32869 (0x8065)	Данные о положении, скорости, направлении движения и т.д.
MSG_TYPE_SENSORS_ STATE	111 (0x006F)	32879 (0x806F)	Состояние датчиков трекера
MSG_TYPE_EVENT	141 (0x008D)	32909 (0x808D)	Событие

Приложение 1

Таблица П1. Типы сообщений

таолица 111. Типы сообщен			
Обозначение	Значе ние	Тип	
MSG_TYPE_NULL	0	Пустышка	
MSG_TYPE_REQUEST_TRACKER_I	10	Запрос идентификационного номера	
MSG_TYPE_TRACKER_ID	11	Идентификационный номер	
MSG_TYPE_TRACKER_ID_EXT	12	Идентификация трекера (расширенная)	
MSG_TYPE_DISCONNECT	20	Закрыть соединение	
MSG_TYPE_REQUEST_PASSWORD	30	Запрос пароля	
MSG_TYPE_PASSWORD	31	Пароль	
MSG_TYPE_REQUEST_STATE_FUL L_INFO	90	Запрос полной информации о состоянии трекера	
MSG_TYPE_STATE_FULL_INFO_T1 04	92	Полная информация о состоянии трекера T104	
MSG_TYPE_REQUEST_CURRENT_ GPS_DATA	100	Запрос текущих GPS данных	
MSG_TYPE_CURRENT_GPS_DATA	101	Данные о положении, скорости, направлении движения и т.д.	
MSG_TYPE_REQUEST_SENSORS_ STATE	110	Запрос состояния датчиков трекера	
MSG_TYPE_SENSORS_STATE	111	Состояние датчиков трекера	
MSG_TYPE_SENSORS_STATE_T10	112	Состояние входов и выхода трекера АПЭЛ Т100	
MSG_TYPE_SENSORS_STATE_T10 0_4	113	Состояние входов и выхода трекера АПЭЛ Т100.4	
MSG_TYPE_REQUEST_LAST_LOG_	120	Запрос индекса последней записи	
INDEX		журнала	
MSG_TYPE_LAST_LOG_INDEX	121	Индекс последней записи журнала	
MSG_TYPE_REQUEST_LOG_RECO	130	Запрос записей журнала	
RDS			
MSG_TYPE_LOG_RECORDS	131	Записи журнала	
MSG_TYPE_EVENT	141	Событие	
MSG_TYPE_TEXT	150	Текст	

Обозначение	Значе ние	Тип
MSG_TYPE_ACK_ALARM	160	Подтверждение аварийного сообщения
MSG_TYPE_SET_TRACKER_MODE	170	Установка режима работы трекера
MSG_TYPE_GPRS_COMMAND	180	GPRS-команда
MSG_TYPE_REQUEST_TRACKER_		Запрос текущих настроек трекера
SETTINGS		
MSG_TYPE_TRACKER_SETTINGS		Текущие настройки трекера
MSG_TYPE_SET_TRACKER_SETTI		Установка настроек трекера
NGS		

История изменений

Версия 0.10

- Добавлено сообщение «Текущие настройки трекера».
- Добавлено сообщение «Установка настроек трекера».

Версия 0.9.1

- Исправлены описания сообщений «Пароль», «Текущее состояние трекера Т-104», «Закрытие сеанса связи», «Событие», «GPRS-команда» Версия 0.9
 - Добавлено сообщение «Идентификация трекера (расширенная)».
- Добавлено сообщение «Запрос полной информации о состоянии трекера».
- Добавлено сообщение «Полная информация о состоянии трекера Т104»

Версия 0.8

• Добавлено сообщение «Состояние датчиков Т-100.4».

Версия 0.7

- Добавлено сообщение «Установка режима работы трекера».
- Добавлено сообщение «GPRS-команда».

Версия 0.6

- Добавлено сообщение «Пустышка».
- Добавлено сообщение «Состояние датчиков Т-100».

Версия 0.5

- Добавлен флаг аварийного сообщения в заголовке сообщения.
- Добавлено сообщение «Подтверждение аварийного сообщения».

Версия 0.4.1

• Скорректирована формулировка «Индекса последней записи в журнале» на «Индекс записи следующей за последней записью в журнале».

Версия 0.4

• Добавлено новое сообщение - «Текст».

Версия 0.2.3

• Изменен список типов сообщений, которые могут быть записями в сообщении «Записи журнала».

Версия 0.2.2

• Добавлено сообщение «Событие».

Версия 0.2.1

• Уточнения для сообщения «Состояния датчиков».

Версия 0.2

- Изменены структуры запросов для работы с датчиками.
- Добавлены сообщения «Запрос пароля» и «Пароль».

Версия 0.1.2

- Изменен порядок установления связи и передачи сообщений («Сеанс связи трекера с сервером»).
- Добавлено уточнение для сообщения «Текущие GPS-данные» о достоверности навигационных данных.